Multimodal User Interfaces: Who’s the User?

Anil K. Jain
Dept. of Computer Science and Engineering
Michigan State University
http://biometrics.cse.msu.edu
Outline

• Biometric recognition
• Applications
• Biometric characteristics
• Difficult pattern recognition problem
• Fingerprint matching
• Multimodal biometrics
• Summary
Questions on Identity

- Is this the person who he or she claims to be?
- Has this applicant been here before?
- Should this individual be given access to our system?
- Is this person on a watch list?
Traditional Identification Methods

1. Insert ATM card 2. Enter PIN

ATM does not know the difference between a genuine user, and an impostor who stole the card and guessed the PIN
"I got our new ATM card today!"

"You did? Oh, goodie! I can't wait to use it!"

"I had to select a secret PIN code for the new ATM card!"

"After giving it a lot of thought, I finally settled on one!"

"Let me guess... it's our initials? Our phone number? Our anniversary? Our address?"

"Ha! Any criminal could easily connect those with us! I came up with a code no one would think to associate with us!"

"All right, already! What is it?"

"313715!"
Too Many Passwords!!

• Heavy web users have an **average of 21 passwords**; 81% of users select a common password and 30% write their passwords down or store them in a file. *(2002 NTA Monitor Password Survey)*
• A system help desk call to reset the password costs about $40
Fake Documents

• **Identity fraud** is the fastest growing crime in the United States; Federal Trade Commission Estimates:
 - 3.3 million identity thefts in U.S. in 2002
 - 6.7 million victims of credit card fraud

• Easy to obtain driver licenses based on false birth certificates, utility bills and other fraudulent documents

• **Identity Fraud Cost:**
 - Welfare disbursements: $1 billion
 - Credit card transactions: $1 billion
 - Cellular phone: $1 billion
 - ATM withdrawals: $3 billion
Biometric Recognition

biometrics: A measurable, physical characteristic or personal behavioral trait used to recognize the identity, or verify the claimed identity, of an enrollee.

biometric recognition: Personal recognition based on “who you are or what you do” as opposed to “what you know” (password) or “what you have” (ID card).
Verification vs Identification

- Verification (1:1 match)
- Identification (1:Many match)
- Watchlist (1:Few match)
Advantages of Biometrics

- Positive Identification: Is this the person she claims to be? **Provide log-in access to a valid user**

- Negative Identification: Is this the person she denies to be? **Prevent issuing multiple driver licenses to the same person**

- Cannot be transferred, forgotten, lost or copied

- Eliminate repudiation claims

- Automatic **personalization** of user interfaces
Biometrics for Personalization

- Automatic personalization of vehicle settings:
 - Seat position
 - Steering wheel position
 - Mirror positions
 - Lighting
 - Radio station preferences
 - Climate control settings

- URLs at your fingertips

http://www.visteon.com
Biometric Applications

- Iris-based ATM
- Fingerprint at checkout counter
- Face scan at airports
- Smart card with fingerprints
- Disney World
- Smart gun
Ben Gurion Airport

Saudi Arabia

© Anil Jain, 2003
Biometric Characteristics
Applied Digital Solutions new "Verichip" about the size of a grain of rice, is the first-ever computer ID chip, that could be embedded beneath a person's skin.

Yahoo! News 27 Feb '02
Biometric Market Share

2003 Comparative Market Share by Technology
(Does not include AFIS revenue)
Copyright © 2003 International Biometric Group

- Finger-Scan: 52.0%
- Facial-Scan: 11.4%
- Hand-Scan: 10.0%
- Middleware: 12.4%
- Iris-Scan: 7.3%
- Voice-Scan: 4.1%
- Signature-Scan: 2.4%
- Keystroke-Scan: 0.3%
Which Biometric is the Best?

- **Universality** (everyone should have this trait)
- **Uniqueness** (different values for different persons)
- **Permanence** (should be invariant with time)
- **Collectability** (can be measured quantitatively)
- **Performance** (achievable recognition accuracy, resources required, operational/environment factors)
- **Acceptability** (are people willing to accept it?)
- **Circumvention** (how easy it is to fool the system)
Biometrics as a Pattern Recognition System
Challenges in Biometric Recognition

- Large number of classes (~6 billion faces)
- Intra-class variability and inter-class similarity
- Segmentation
- Noisy and distorted images
- Population coverage & scalability
- System performance (error rate, speed, cost)
- Attacks on the biometric system
- Individuality of biometric characteristics
Large Intra-class Variability
Small Inter-class Variability

Twins

www.marykateandashley.com

Father and son

news.bbc.co.uk/hi/english/in_depth/americas/2000/us_elections
Segmentation: Face Detection
Picking Faces in a Crowd

Games Magazine
September 2001
© Anil Jain, 2003
Population coverage

• ~ 3% of the population has poor quality fingerprint images which means they have to be identified by some other means

Four impressions of a user’s fingerprint
“State-of-the-art” Error Rates

<table>
<thead>
<tr>
<th>Test</th>
<th>Test Parameter</th>
<th>False Reject Rate</th>
<th>False Accept Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fingerprint</td>
<td>FVC [2002]</td>
<td>20 years (average age)</td>
<td>0.2%</td>
</tr>
<tr>
<td>Face</td>
<td>FRVT [2002]</td>
<td>Varied lighting, outdoor/indoor</td>
<td>10%</td>
</tr>
<tr>
<td>Voice</td>
<td>NIST [2000]</td>
<td>Text Independent</td>
<td>10-20%</td>
</tr>
</tbody>
</table>

At NY airports, an average of ~300,000 passengers pass through daily. If all of these used biometric-authenticated smart cards for identification, there would be 600 falsely rejected (and inconvenienced) passengers per day for fingerprints, 30,000 for face and 45,000 for voice. Similar numbers can be computed for false accepts.
Attacks on Biometric Systems

- Commercial biometric systems cannot distinguish between real and artificial fingerprints (faces)

Dummy finger created from a lifted impression
Circumvention

In response to the new TIA's Gait Identification Program, Americans take action to protect their Privacy.
FACES CAN LIE.

FINGERPRINTS, NEVER.
After nine months of intense scrutiny by lawmakers and privacy hawks, makers of controversial facial-surveillance technology have found themselves struggling to meet commercial demand in the wake of last week's deadly attacks.

Executives say their systems could have saved lives had they been in place at airports, border crossings and other checkpoints last Tuesday.
Face Recognition Technology Fails to Flag “Suspects” at Airport

September 4, 2003

Camera Technology designed to spot potential terrorists by their facial characteristics at airports failed its first major test.

Last Year, two separate face recognition systems at Boston’s Logan Airport failed 96 times to detect volunteers who played potential terrorists as they passed security checkpoints during a three-month test period. The system correctly detected them 153 times. The airport’s report called the rate of inaccuracy “excessive”. The report was completed in July 2002 but not made public. The ACLU obtained a copy last month through a Freedom of Information Act request.

Logan is where 10 of the 19 terrorists boarded the flights that were later hijacked Sept. 11, 2001. The airport is now testing other security technology, including infrared cameras and eyeball scans.

http://www.usatoday.com/usatonline/20030902/5460651s.htm
Model-based Face Recognition

Generic Model

Face model of Pat Flynn

Facial Measurements

Rendered face image of Pat Flynn

© Anil Jain, 2003
Fingerprints

- Fingerprint-based identification has a 100-year history
- Different fingers have different ridge characteristics (minute details). *Identical twins have different fingerprints*
- Minute details are permanent
- Fingerprint identification is acceptable in courts

Fingerprint on Palestinian lamp (400 A.D.) Bewick’s trademark
Fingerprint Sensors

- Optical, capacitive, ultrasound, pressure, thermal, electric field
Fingerprint Matching

Find the similarity between two fingerprints

Two fingerprints from the same finger

Fingerprints from two different fingers
Fingerprint Representation

- Local ridge characteristics (minutiae): ridge ending and ridge bifurcation.
- Singular points: ridge orientation tendency not continuous.
Minutiae Extraction

Input Image → Orientation Estimation → Ridge Filter

Minutiae Extraction → Postprocessing → Ridge Thinning

Minutiae Detection
Fingerprint Deformation

- Fingerprint imaging introduces non-linear deformations.
Minutiae Correspondence

- Use elastic string matching to obtain minutiae correspondences
Minutiae Matching
Matching Scores

$S_{ab} = 97; S_{bc} = 5; S_{ac} = 2$
Matching Score Distributions

- NIST-9 database (1,350 mated fingerprints)
Noisy Fingerprint Images

Quality Index = 0.96
False Minutiae=0

Quality Index = 0.53
False Minutiae=7

Quality Index = 0.04
False Minutiae=27

© Anil Jain, 2003
Fingerprint Enhancement

Minutiae extraction before enhancement

Minutiae extraction after enhancement

© Anil Jain, 2003
Performance with Enhancement

![Graph showing the comparison between 'with enhancement' and 'without enhancement' in terms of authentic acceptance rate and false acceptance rate. The graph illustrates a clear advantage of using enhancement in authentic acceptance rate.]
Multimodal Biometrics

MULTIMODAL BIOMETRIC SYSTEMS

Multiple Sensor System
- Optical
- Chip-Based

Multiple Matcher System
- Minutiae-Based
- Filter-Based

Multiple Finger System

Multiple Impression System
- Face
- Fingerprint

© Anil Jain, 2003
Multiple Fingers, Matchers and Templates
Using Multiple Biometrics

- Limitations of using a single biometric:
 - Failure to enroll rate (~3% for fingerprints)
 - Noise in sensed data (repeated use of sensor)
 - Lack of permanence (voice altered due to cold)
 - Limited discriminability (high FAR/FRR)
 - Easier to spoof (fake fingerprint)
Fusion Methodology

- Variety of techniques to combine scores output by individual biometrics – KNN, decision trees, discriminant analysis,...
- Sum rule (weighted sum of individual scores) performs well
Soft Biometrics

Soft biometrics provide some information about the individual, but lack the distinctiveness and permanence to sufficiently differentiate them.

- Ethnicity, Skin Color, Hair color
 (Sub-Saharan African, Indian, Southern European, and Northwest European)
 http://anthro.palomar.edu/adapt/adapt_4.htm
 © Corel Corporation, Ottawa, Canada

- Eye color
 http://ology.amnh.org/genetics/longdefinition/index3.html
 © American Museum of Natural History, 2001

- Weight

- Height
 http://www.altonweb.com/history/wadlow/p2.html
 © Alton Museum of History and Art
Combining Fingerprints with Soft Biometrics

![Graph showing comparison between fingerprint and combined fingerprint with gender, ethnicity, and height on Genuine Acceptance Rate (GAR) against False Acceptance Rate (FAR).]
Template Protection
Summary

- Automatic authentication is becoming a necessity
- Fingerprint sensors can now be embedded in laptops, cellular phones and smart cards
- Performance claims by vendors are overly optimistic; too much hype is not good for this techno
- Popular misconception that biometric authentication is “solved”; need research in sensor design, signal and image processing and pattern recognition
- Biometric fusion will improve population "coverage" as well as performance
- Investigate uniqueness/individuality of biometrics
- Need to ensure user privacy and template security